Skip to main content

Mathematics: Limit and Continuity


Limits


A function f(x) is said to have a limit at l at point a when f(x) approaches to l whenever x approaches to a.
(lim)┬(x→a)f(x)=l

Important Theorem on Limit

For all rational values of n,   (lim)┬(x→a)(x^n-a^n)/(x-a)=na^(n-1)  
Case 1:
When n is a positive integer:
By actual division,  (x^n-a^n)/(x-a)= x^(n-1)+x^(n-2).a+x^(n-3).a^2+…+a^(n-1)
Now,
(lim)┬(x→a)(x^n-a^n)/(x-1)  =   (lim)┬(x→a)[x^(n-1)+x^(n-2).a+x^(n-3).a^2+…+a^(n-1) ]
                = a^(n-1)+a^(n-1)+a^(n-1)+…+a^(n-1)
                = na^(n-1)

Comments