Limits
A function f(x) is said to have a limit
at l at point a when f(x)
approaches to l whenever x
approaches to a.
(lim)┬(x→a)f(x)=l
Important Theorem on Limit
For all rational values of n, (lim)┬(x→a)〖(x^n-a^n)/(x-a)〗=na^(n-1)
Case 1:
When n is a positive integer:
By actual division, (x^n-a^n)/(x-a)= x^(n-1)+x^(n-2).a+x^(n-3).a^2+…+a^(n-1)
Now,
(lim)┬(x→a)〖(x^n-a^n)/(x-1)〗 = (lim)┬(x→a)[x^(n-1)+x^(n-2).a+x^(n-3).a^2+…+a^(n-1)
]
=
a^(n-1)+a^(n-1)+a^(n-1)+…+a^(n-1)
= na^(n-1)
= na^(n-1)

Comments
Post a Comment